CHIRAL AMINAL TEMPLATES 3¹. DIASTEREOSELECTIVITY OF ORGANOMETALLIC ATTACK ON ALDEHYDES BEARING A CHIRAL IMIDAZOLIDINE GROUP

A. Alexakis^{*}, R. Sedrani, J.F. Normant and P. Mangeney

Laboratoire de Chimie des Organoéléments, CNRS URA 856 Université P et M Curie, 4 Place Jussieu, F-75252 Paris Cedex 05, France

(Received 5 March 1990)

<u>Abstract</u> Monoprotected phthalaldehydes 3 and 4, bearing a chiral imidazolidine auxiliary were reacted with various organometallic reagents. Lithium organocuprates gave almost exclusively one diastereomer whereas an organomanganese reagent gave the opposite one Hydrolysis of the aminal molety affords the enantiomerically pure lactols 7a-d. In both 3 and 4 the chiral imidazolidine auxiliary is very effective, but affords opposite results which are rationalized by chelation and/or steric factors

In the course of our studies on chiral 1,2-diamines, having a C_2 axis of symmetry², we have recently described the use of chiral imidazolidines, as auxiliaries, in conjugate addition reactions¹ The results obtained on the model cinnamate system 1 and 2 were extended to other enones and enoates with equal success³ The conjugate addition of an organometallic reagent to an enone and the direct attack of a carbonyl group do not obey to the same rules, their mechanisms are intrinsiqually different. The aim of the work presented herein is to compare the stereochemical effects of a chiral imidazolidine in both these reactions using a similar model system. The most closely related compound to cinnamates 1 and 2, are aldehydes 3 and 4⁴. However, 1 and 2 are conformationally stable in the "exo" conformation, shown in the scheme, whereas aldehydes 3 and 4 are almost equally stable in both conformations A and B

Only conformation A is analogous to cinnamates 1 and 2. As for our previous study¹, we used, as homochiral auxiliaries, two diamines 1,2-bis N-methylamino-1,2-diphenyl ethane for 3 and 1,2-bis N-methylamino cyclohexane for 4

Aldehydes 3 and 4 were reacted with various organometallic reagents, among which the most significant are shown in the table The reaction products 5a-d and 6a-d, were submitted to acid hydrolysis to remove the chiral auxiliary, and to recover the diamine The obtained lactols 7a-d were reduced and acetylated to the diacetates 8a-d in order to determine the enantiomeric excess by ¹H NMR with the chiral shift reagent⁵ (Eu(hfc)₃) Alternatively, the lactol 7a was oxidized to the known lactone 9⁶, the comparison of the optical rotation allowed, thus, the determination of the absolute configuration

With aldehyde 3, organolithium and Grignard reagents, in Et₂O, are moderately selective Remarkably, lithium dibutyl cuprate (entry 4), a reagent which is not especially used for carbonyl attack, affords only one detectable enantiomer⁷ All three reagents led to the same major enantiomer. In contrast, butyl manganese bromide⁸ gave the opposite enantiomer almost exclusively (entry 3)¹

Other organocuprates gave variable results, Me₂CuL₁ (entry 5) being excellent, whereas Ph₂CuL₁ (entry 6) is almost non-diastereoselective. Such a variability is not encountered with R₂CuL₁ and aldehyde 4, having a different imidazolidine auxiliary. All organic groups of R₂CuL₁ afforded an excellent diastereoselectivity in this case.

The stereochemical results obtained herein are in complete contrast to those obtained with our previous cinnamate model¹ If our proposed explanations were correct (chelation control with cinnamate 1 and steric control on cinnamate 2), that would mean that aldehydes 3 and 4 react in a different conformation than cinnamates 1 and 2 viz endo conformation B instead of exo conformation A Indeed, if we assume that the carbonyl attack occurs frontside¹ with a 109° angle (Burgi-Dunitz angle)⁹, it is easy to understand that such a nucleophilic attack on conformer A is more sterically hindered than on conformer B¹⁰

It, thus, appears that in 1,2 carbonyl attack, as in our previous 1,4 conjugate addition, the chiral imidazolidine template acts as an efficient auxiliary in asymmetric reactions. Moreover, as described in the next letter, chiral imidazolidines are equally effective when placed on the nucleophile instead of the electrophile. In both cases, the diamine, through formation of an aminal, acts as a protecting group of an aldehydic carbonyl

TABLE

Starting aldehyde	Entry	Organometallic	Product	Overali	Optical	Absolute
		reagent		chemical	yield ^b	configuration
		<u> </u>		yleid ^a %	%	
Me, Ph N Jun Ph CHO 3	1	BuLi	8a	72	40	<u>s</u>
	2	BuMgCl	8a	67	68	<u>s</u>
	3	BuMnBr	8a	64	99	R
	4	Bu ₂ CuLi	8a	70	100	<u>s</u>
	5	Me ₂ CuLi	8b	71	100	<u>s</u>
	6	Ph ₂ CuLi	8c	72	9	<u>s</u>
	7	(Et 12CuLi	8d	73	44	<u>s</u>
Me N N CHO 4	8	Me ₂ CuLi	8b	55	90	В
	9	Bu2CuLi	8 a	89	90	В
	10	Ph ₂ CuLi	8c	70	98	В
	11	(Et 12CuLi	8d	42	72	В

a) Yield of isolated diacetates 8a-d

b) Based on the value of the chiral diamine e e 88-100%

A. ALEXAKIS et al

functionality The C_2 axis of symmetry of the starting diamine allows a great simplification of the elements of stereocontrol¹¹

References and notes.

- Part 1 Alexakis, A , Sedrani, R , Mangeney, P , Normant, J F Tetrahedron Lett, 1988, 29, 4411
 Part 2 Alexakis, A , Sedrani, R , Mangeney, P Tetrahedron Lett, 1990, 31, 0000
- 2. a) Mangeney, P, Tejero, T, Alexakis, A, Grojean, F, Normant, J F Synthesis, 1988, 255
 b) Mangeney, P, Grojean, F, Alexakis, A., Normant, J F. Tetrahedron Lett, 1988, 29, 2675
 c) Mangeney, P, Alexakis, A, Normant, J F. Tetrahedron Let, 1988, 29, 2677
 d) Cuvinot, D, Mangeney, P, Alexakis, A, Normant, J F, Lellouche, J.-P J Org Chem, 1989, 54, 2420
- 3. Sedrani, R Thèse de doctorat de l'Université P et M Curie, Paris, Feb 13 1990
- 4. Aldehydes 3 and 4 are prepared, in Et₂O, by stirring an equimolecular amount of *o*-phthalic dialdehyde and diamine, at room temperature, in the presence of molecular sieves 4 Å After 0 5-2h, the reaction is completed, the sieves are filtered off, and the solvent evaporated. 3 is obtained in 95% yield after column chromatography and 4 in 96% yield after Kugelrohr distillation
- 5. Asami, M , Mukaiyama, T Chem Lett , 1980, 17
- 6. Barton, DHR, De Vries, JX J Chem Soc 1963, 1916
- 7. There are few reports on the higher diastereoselection of organocopper reagents in aldehyde attack, as compared to other organometallic reagents See, among others
 a) Janowitz, A, Kunz, T, Handke, G, Reissig, HU Synlett ,1989, 24
 b) Jefford, CW, Jaggi, D, Boutouvalas, J Tetrahedron Lett , 1986, 27, 4011
 c) Still, WC, Schneider, JA Tetrahedron Lett , 1980, 21, 1035
- 8. Cahiez, G, Laboue, B Tetrahedron Lett, 1989, 30, 3545
- 9. a) Burgi, H B, Dunitz, J D, Shefter, E J Am Chem Soc, 1973, 95, 5065
 b) Burgi, H B Ang Chem Int Ed Engl, 1975, 14, 460
- 10. Davies, SG, Goodfellow, CL, Synlett, 1989, 59
- 11. Whitesell, JK Chem Rev, 1989, 89, 1581